主頁 > 教育培訓 > 中小學教育 > 三角函數(shù)公式大全匯總總結(4)

三角函數(shù)公式大全匯總總結(4)

  萬能公式

  sinα=2tan(α/2)/[1+tan^(α/2)]

  cosα=[1-tan^(α/2)]/1+tan^(α/2)]

  tanα=2tan(α/2)/[1-tan^(α/2)]

  其它公式

  (1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

  (4)對于任意非直角三角形,總有

  tanA+tanB+tanC=tanAtanBtanC

  證:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得證

  同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下結論

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

免責聲明:該文觀點僅代表作者本人,查查吧平臺系信息發(fā)布平臺,僅提供信息存儲空間服務,不承擔相關法律責任。圖片涉及侵權行為,請發(fā)送郵件至85868317@qq.com舉報,一經(jīng)查實,本站將立刻刪除。返回查查吧首頁,查看更多>>
提示

該文觀點僅代表作者本人,查查吧平臺系信息發(fā)布平臺,僅提供信息存儲空間服務,不承擔相關法律責任。圖片涉及侵權行為,請發(fā)送郵件至85868317@qq.com舉報,一經(jīng)查實,本站將立刻刪除。

優(yōu)惠商城

更多