主頁 > 教育培訓(xùn) > 中小學(xué)教育 > 初中數(shù)學(xué)教學(xué)案例分析及大綱解析

初中數(shù)學(xué)教學(xué)案例分析及大綱解析

  一、教學(xué)案例實錄

  教學(xué)過程 :

  1. 習(xí)舊引新

 ?、?在 ⊙O 上 , 任到三個點 A 、 B 、 C, 然后順次連接 , 得到的是什么圖形 ? 這個圖形與 ⊙O 有什么關(guān)系 ?

 ?、?由圓內(nèi)接三角形的概念 , 能否得出什么叫圓的內(nèi)接四邊形呢 ( 類比 )?

  2. 概念學(xué)習(xí)

 ?、?什么叫圓的內(nèi)接四邊形 ?

  ⑵ 如圖 1, 說明四邊形 ABCD 與 ⊙O 的關(guān)系。

  3. 探討性質(zhì)

  ⑴ 前面我們已經(jīng)學(xué)習(xí)了一類特殊四邊形 ---- 平行四邊形 , 矩形 , 菱形 , 正方形 , 等腰梯形的性質(zhì) , 那么要探討圓內(nèi)接四邊形的性質(zhì) , 一般要從哪幾個方面入手 ?

 ?、?打開《幾何畫板》 , 讓學(xué)生動手任意畫 ⊙O 和 ⊙O 的內(nèi)接四邊形 ABCD 。 ( 教師適當(dāng)指導(dǎo) )

 ?、?量出可試題的所有值 ( 圓的半徑和四邊形的邊 , 內(nèi)角 , 對角線 , 周長 , 面積 ), 并觀察這些量之間的關(guān)系。

 ?、?改變圓的半徑大小 , 這些量有無變化 ? 由 (3) 觀察得出的某些關(guān)系有無變化 ?

 ?、?移動四邊形的一個頂點 , 這些量有無變化 ? 由 (3) 觀察得出的某些關(guān)系有無變化 ? 移動四邊形的四個頂點呢 ? 移動三個頂點呢 ?

 ?、?如何用命題的形式表述剛才的實驗得出來的結(jié)論呢 ?( 讓學(xué)生回答 )

  4. 性質(zhì)的證明及鞏固練習(xí)

 ?、?證明猜想

  已知 : 如圖 1, 四邊形 ABCD 內(nèi)接于 ⊙O 。求證 :∠BAD+∠BCD=180°,∠ABC+∠ADC=180° 。

  ⑵ 完善性質(zhì)

 ?、?若將線段 BC 延長到 E( 如圖 2), 那么 ,∠DCE 與 ∠BAD 又有什么關(guān)系呢 ?

 ?、?圓的內(nèi)接四邊形的性質(zhì)定理 : 圓內(nèi)接四邊形的對角互補 , 并且任何一個外角都等于它的內(nèi)對角。

 ?、?練習(xí)

  ① 已知 : 在圓內(nèi)接四邊形 ABCD 中 , 已知 ∠A=50°,∠D-∠B=40°, 求 ∠B,∠C,∠D 的度數(shù)。

  ② 已知 : 如圖 3, 以等腰 △ABC 的底邊 BC 為直徑的 ⊙O 分別交兩腰 AB,AC 于點 E,D, 連結(jié) DE,

  求證 :DE∥BC 。 ( 演示作業(yè)本 )

  5. 例題講解

  引例已知 : 如圖 4,AD 是 △ABC 中 ∠BAC 的平分線 , 它與 △ABC 的外接圓交于點 D 。

  求證 :DB=DC 。 ( 引例由學(xué)生證明并板演 )

  教師先評價學(xué)生的板演情況 , 然后提出 , 若將已知中的“ AD 是 △ABC 中的 ∠BAC 的平分線 ” 改為“ AD 是 △ABC 的外角 ∠EAC 的平分線 ”, 又該如何證明 ? 引出例題。

  例已知 : 如圖 5,AD 是 △ABC 的外角 ∠EAC 的平分線 , 與 △ABC 的外接圓交于點 D,

  求證 :DB=DC 。

  6. 小結(jié) : 為了使學(xué)生對所學(xué)的內(nèi)容有一個完整而深刻的印象 , 讓學(xué)生組成小組 , 從概念 , 性質(zhì) , 方法 , 特殊性進行討論 , 然后對討論的結(jié)果進行歸納。

 ?、?本節(jié)課我們學(xué)習(xí)了圓內(nèi)接四邊形的概念和圓內(nèi)接四邊形的和要性質(zhì) , 要求同學(xué)們理解圓內(nèi)接四邊形和四邊形的外接圓的概念 , 理解圓內(nèi)接四邊形的性質(zhì)定理 ; 并初步應(yīng)用性質(zhì)定理進行有關(guān)命題的證明和計算。

  ⑵ 我們結(jié)合《幾何畫板》的使用導(dǎo)出了圓內(nèi)接四邊形的性質(zhì) , 在這一過程中用到了許多數(shù)學(xué)方法 ( 實驗 , 觀察 , 類比 , 分析 , 歸納 , 猜想等 ), 同學(xué)們要逐步學(xué)會用并關(guān)于應(yīng)用這些方法去探討有關(guān)的數(shù)學(xué)問題 , 提高我們的數(shù)學(xué)實踐能力與創(chuàng)新能力。

免責(zé)聲明:該文觀點僅代表作者本人,查查吧平臺系信息發(fā)布平臺,僅提供信息存儲空間服務(wù),不承擔(dān)相關(guān)法律責(zé)任。圖片涉及侵權(quán)行為,請發(fā)送郵件至85868317@qq.com舉報,一經(jīng)查實,本站將立刻刪除。返回查查吧首頁,查看更多>>
提示

該文觀點僅代表作者本人,查查吧平臺系信息發(fā)布平臺,僅提供信息存儲空間服務(wù),不承擔(dān)相關(guān)法律責(zé)任。圖片涉及侵權(quán)行為,請發(fā)送郵件至85868317@qq.com舉報,一經(jīng)查實,本站將立刻刪除。

優(yōu)惠商城

更多