主頁 > 教育培訓 > 學歷教育 > 2013考研數(shù)學一大綱解析(3)

2013考研數(shù)學一大綱解析(3)

  線性代數(shù)

  一、行列式

  考試內(nèi)容

  行列式的概念和基本性質 行列式按行(列)展開定理

  考試要求

  1.了解行列式的概念,掌握行列式的性質.

  2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.

  二、矩陣

  考試內(nèi)容

   矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣

  矩陣的秩 矩陣的等價 分塊矩陣及其運算

  考試要求

 ?。敚?.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣以及它們的性質.

  2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質.

  3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.

  4.理解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.

  5.了解分塊矩陣及其運算.

  三、向量

  考試內(nèi)容

  向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量空間及其相關概念 維向量空間的基變換和坐標變換 過渡矩陣 向量的內(nèi)積 線性無關向量組的正交規(guī)范化方法 規(guī)范正交基 正交矩陣及其性質

  考試要求

  1.理解維向量、向量的線性組合與線性表示的概念.

  2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法.

  3.理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩.

  4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系.

  5.了解維向量空間、子空間、基底、維數(shù)、坐標等概念.

  6.了解基變換和坐標變換公式,會求過渡矩陣.

  7.了解內(nèi)積的概念,掌握線性無關向量組正交規(guī)范化的施密特(Schmidt)方法.

  8.了解規(guī)范正交基、正交矩陣的概念以及它們的性質.

  四、線性方程組

  考試內(nèi)容

  線性方程組的克拉默(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質和解的結構 齊次線性方程組的基礎解系和通解 解空間 非齊次線性方程組的通解

  考試要求

  l.會用克拉默法則.

  2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.

  3.理解齊次線性方程組的基礎解系、通解及解空間的概念,掌握齊次線性方程組的基礎解系和通解的求法.

  4.理解非齊次線性方程組解的結構及通解的概念.

  5.掌握用初等行變換求解線性方程組的方法.

  五、矩陣的特征值和特征向量

  考試內(nèi)容

  矩陣的特征值和特征向量的概念、性質 相似變換、相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及其相似對角矩陣

  考試要求

  1.理解矩陣的特征值和特征向量的概念及性質,會求矩陣的特征值和特征向量.

  2.理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.

  3.掌握實對稱矩陣的特征值和特征向量的性質.

  六、二次型

  考試內(nèi)容

  二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標準形和規(guī)范形 用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性

  考試要求

  1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,了解二次型的標準形、規(guī)范形的概念以及慣性定理.

  2.掌握用正交變換化二次型為標準形的方法,會用配方法化二次型為標準形.

  3.理解正定二次型、正定矩陣的概念,并掌握其判別法

  概率論與數(shù)理統(tǒng)計

  一、隨機事件和概率

  考試內(nèi)容

  隨機事件與樣本空間 事件的關系與運算 完備事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗

  考試要求

  1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算.

  2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式,以及貝葉斯(Bayes)公式.

  3.理解事件獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法.

  二、隨機變量及其分布

  考試內(nèi)容

  隨機變量 隨機變量分布函數(shù)的概念及其性質 離散型隨機變量的概率分布 連續(xù)型隨機變量的概率密度 常見隨機變量的分布 隨機變量函數(shù)的分布

  考試要求

  1.理解隨機變量的概念,理解分布函數(shù)的概念及性質,會計算與隨機變量相聯(lián)系的事件的概率.

  2.理解離散型隨機變量及其概率分布的概念,掌握0-1分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應用.

  3.了解泊松定理的結論和應用條件,會用泊松分布近似表示二項分布.

  4.理解連續(xù)型隨機變量及其概率密度的概念,掌握均勻分布、正態(tài)分布 、指數(shù)分布及其應用,其中參數(shù)為的指數(shù)分布的概率密度為

  5.會求隨機變量函數(shù)的分布.

免責聲明:該文觀點僅代表作者本人,查查吧平臺系信息發(fā)布平臺,僅提供信息存儲空間服務,不承擔相關法律責任。圖片涉及侵權行為,請發(fā)送郵件至85868317@qq.com舉報,一經(jīng)查實,本站將立刻刪除。返回查查吧首頁,查看更多>>
提示

該文觀點僅代表作者本人,查查吧平臺系信息發(fā)布平臺,僅提供信息存儲空間服務,不承擔相關法律責任。圖片涉及侵權行為,請發(fā)送郵件至85868317@qq.com舉報,一經(jīng)查實,本站將立刻刪除。

優(yōu)惠商城

更多